

The Euclid Science Ground Segment Objectives

Euclid France - 2012

M. Sauvage, Ground Segment Scientist

- Defined essentially in the Science Management Plan
- Detailed during interactions with the Euclid "stakeholders" (EC scientists, Instrument Dev. Teams, EST...)

- Defined essentially in the Science Management Plan
- Detailed during interactions with the Euclid "stakeholders" (EC scientists, Instrument Dev. Teams, EST...)
 - * Provide science ready data products:
 - * All calibrations performed, conversion to astronomical units (but no or little conversion to absolute units), "objects" (galaxies, stars) magnitudes and spectra extracted and catalogued, instrumental properties measured (e.g. PSF).
 - * Science "interpretation" of the data is the task of the Science Working Groups. In some cases, it may be performed using the SGS systems.

- Defined essentially in the Science Management Plan
- Detailed during interactions with the Euclid
 "stakeholders" (EC scientists, Instrument Dev. Teams, EST...)
 - * Provide science ready data products:
 - * All calibrations performed, conversion to astronomical units (but no or little conversion to absolute units), "objects" (galaxies, stars) magnitudes and spectra extracted and catalogued, instrumental properties measured (e.g. PSF).
 - * Science "interpretation" of the data is the task of the Science Working Groups. In some cases, it may be performed using the SGS systems.
 - * Assist SOC in the daily operations of the spacecraft:
 - Monitoring the health of the instrument on a daily basis.
 - * Performing trend analysis and feeding back results to EST, Calibration, and Survey working groups for mission planning.
 - * Overseeing the survey completion (e.g. assessing success/failure of tile observations) and feeding back results to EST, and Survey Working group.

- Defined essentially in the Science Management Plan
- Detailed during interactions with the Euclid
 "stakeholders" (EC scientists, Instrument Dev. Teams, EST...)
 - * Provide science ready data products:
 - * All calibrations performed, conversion to astronomical units (but no or little conversion to absolute units), "objects" (galaxies, stars) magnitudes and spectra extracted and catalogued, instrumental properties measured (e.g. PSF).
 - * Science "interpretation" of the data is the task of the Science Working Groups. In some cases, it may be performed using the SGS systems.
 - * Assist SOC in the daily operations of the spacecraft:
 - * Monitoring the health of the instrument on a daily basis.
 - * Performing trend analysis and feeding back results to EST, Calibration, and Survey working groups for mission planning.
 - * Overseeing the survey completion (e.g. assessing success/failure of tile observations) and feeding back results to EST, and Survey Working group.

Classic role for a ground segment

Mission statement (non classic)

The Euclid SGS will also process/ingest ground-based data, as well as generate (and process) simulated data.

Mission statement (non classic)

The Euclid SGS will also process/ingest ground-based data, as well as generate (and process) simulated data.

- * For the WL probe we need to study evolution of the signal with redshift.
 - * On board we only have 4 bands for the 1.5 10⁹ galaxies in the WL catalog.
- * We rely on external surveys to provide the extra coverage for photometric redshift estimation.
- * We cannot simply use their catalogs because we want to ensure the highest homogeneity of the Euclid dataset.
 - * Astrometric reference, photometric methods, PSF-dependency...

Mission statement (non classic)

The Euclid SGS will also process/ingest ground-based data, as well as generate (and process) simulated data.

- * For the WL probe we need to study evolution of the signal with redshift.
 - On board we only have 4 bands for the 1.5 10⁹ galaxies in the WL catalog.
- * We rely on external surveys to provide the extra coverage for photometric redshift estimation.
- * We cannot simply use their catalogs because we want to ensure the highest homogeneity of the Euclid dataset.
 - * Astrometric reference, photometric methods, PSF-dependency...

- * The main purpose of Euclid is to validate/falsify current cosmological models and fundamental physics theories.
- * We cannot rely only on our data processing expertise to cancel every source of bias.
- * Simulated surveys will be a key tool for the scientific analysis of the mission.
 - * Requires instruments/mission simulators.
 - * Provides a capacity to make many realizations of the "Euclid experience" to track biases.

Structure and Position of the SGS in the Euclid

The SGS structure and teams

- * The SGS is comprised of:
 - * A Project Office:
 - * F. Pasian, Manager Ch Dabin, System Lead M. Sauvage, SGS Scientist O. Mansutti, Configuration Lead, C. Vuerli PA/QA lead A. Gregorio, IOT/PO coordination.
 - * A System team:
 - * Identifies and develops all services needed for the proper execution of the SGS tasks.
 - * Proposes common tools for the SGS developments.
 - * Studies the scenarios for the actual implementation of the SGS pipeline.
 - * A series of Organization Units (10):
 - * In charge of prototyping the different pipeline elements.
 - * Structured along the different stages of the pipeline (but see later).
 - * A series of National Science Data Centers
 - * Providing developer expertise to implement the prototypes.
 - * Providing computing and storage infrastructure to run the pipeline.
 - * In close interaction with the System Team.
- * The SGS Organization Group gathers the PO, the OU and SDC leads, and deals with all development issues for the SGS.

The SGS environment - EC

From the EC management plan

The SGS environment - EC

From the EC management plan

The SGS environment - ESA

From the Science Management Plan

The SGS environment - ESA

From the Science Management Plan

Interactions - SOC

- * For some aspects, the SOC is fully integrated in the SGS:
 - * SOC executes the first stage of data processing (telemetry reformatting and association).
 - * SOC participates in the design and realization of the SGS systems and architecture.
- * W.r.t the SOC, the EC SGS is responsible for:
 - Delivering the "Level 1 pipeline" (i.e. from raw telemetry packets to raw observation "files").
 - * Delivering elements to build the Quick-Release data products ("Level Q").
 - * Defining the operations boundaries of the instruments.
 - * Monitoring instrument health and reporting.

Interactions - PS+EST

- * Essentially, the EST's role is to maximize the scientific output of the mission, w.r.t. the astronomical community.
- * For this SGS this means setting a number of rules:
 - * Defining which data products we are supposed to create and release.
 - * Defining quality objectives for data products.
 - * Defining data release schedule.

Next stop for the SGS: Preliminary Requirements Review

Reviews

Launch date supposed to be on 1st July 2020

Review	Subjects and Result	SGS model - Pipeline maturity status
July 2013: PRR Preliminary Requirements R.	Validate: schedule, management plans, organization, process and architecture principles, Pipeline scenario and full-fledged Data and Processing Flow document Verification of the Reqs on the SGS	Internal interfaces
Nov 2014: SRR System Requirements R.	External interfaces and pipeline interfaces Approve the SGS requirements	Prototypes
May 2016: PDR Preliminary Design R.	Verification of the preliminary design: understanding what is needed for end-to-end data processing, ability to cope with simplified (simulated) data. Performance assessment	Breadboard model
Nov 2017: CDR Critical Design R.	Compatibility tests status and reports and external interfaces Final design and infrastructure	Demonstration model
May 2019: QR Qualification R.	Integration of pipelines on SOC/SDCs infrastructures Readiness of operational interfaces End-to-End test status and reports	Operational model 1
Feb 2020: ORR Operational Readiness R.	Ensure full SGS readiness for in-orbit operations Authorize utilization for space segment in-orbit operations	Operational model 2
Jan 2021: D ata P rocessing R eadiness R .	Ensure the SGS system readiness for public data release	=

The objectives

* In short:

- * Validate schedule, management plans, organization, process and architecture principles.
- * Verification of SGS requirements.
- * In more explicit terms, we need to achieve the following milestones:
 - * Release preliminary management, engineering and product assurance plans.
 - * Release technical requirement specifications.
 - * Identify the system and operations concepts and confirm their technical and programmatic feasibility.

Detailed OU perspective

Technical requirements specification

- * GDPRD and SIRD flow down, associated status and traceability matrix:
 - * Will be covered in the data processing flow document (see later).
- * Preliminary SGS requirements definition:
 - * All requirements placed *on* the SGS lead in turn to requirements placed by some units of the SGS onto other units of the SGS.
 - * At the PRR we need to demonstrate compliance w.r.t. external requirements, and provide preliminary definitions for the internal requirements.
 - * In an OU-specific perspective:
 - * Data processing, performance and infrastructure requirements.
 - * Archiving requirements.
 - * Simulation data production requirements and sizing.
 - * External data production requirements and sizing (other than those already contained in the GDPRD).

Data processing flow document

- * For the Preliminary Requirements Review we need to demonstrate complete mapping between our external requirements and our organization.
- * To come up with a development plan, we need to establish a global overview of the data processing activities of the SGS (the "big picture").
 - * The complete Euclid pipeline is definitely not a chain of OU-developed pipelines...
- * This will be integrated in a Data Processing Flow document
 - * Part 1: for WL and GC linking requirements to data processing actions
 - * Part 2: Organization of the data processing actions into a global flow.
- * Follow this on Redmine:
 - * http://euclid.roe.ac.uk/projects/data-quality-toolt?jump=welcome

Overall open issues

- * Two models for the pipeline implementation:
 - * Distribute by functions: allows optimal specialization hardware/software, generate heavy traffic.
 - * Distribute by sky areas: reduced and possibly optimal traffic, idle time for some centers while survey progresses, not optimal with respect to cadencing of pipeline stages.

Overall open issues

- * Cadence is highly variable at different stages of the pipeline:
 - * At the first stages, high cadence is needed (e.g. transients detection, survey execution monitoring, health monitoring).
 - * At late stages, high cadence does not make sense (e.g. machine learning systems for photo-z prefer large samples, correlation functions do not need recomputing unless volume has increased substantially).
- * Data product levels are broadly defined in the SMP (from 1-raw to 3-science ready).
 - * We need to map those categories onto the actual products of the pipeline.

* Data releases:

- * What data products do we release and following which schedule?
- * We need a working definition of level Q, the Quick-Release data product.
- * To be defined shortly by the EST (proposals are on the table).

OU-EXT & OU-MER

OU-EXT role

- * To bring into the Euclid archive system, the data that are essential for the success of the primary cosmological probes.
 - * g,r,i,z photometry for the whole survey area, at a depth that allows evaluation of a phot-z for all the objects of the survey.
 - * More galaxies than strictly the WL sample.
 - * Stars to control the SED effects in the transfer of the PSF model to galaxies.
 - * In volume this is the largest input to the system (possibly larger than the Euclid data themselves...).
 - * Astrometric catalog (most likely Gaia) to tie all the imaging data together (VIS, NISP, "EXT").
 - * Possibly we shall use as well the spectro-photometric data generated by Gaia (for the PSF model).
 - * Samples of galaxy spectra to calibrate the WL tomographic bins.
 - * Which sample is still a highly debated question.

OU-EXT activities

- * They are driven by the photometric data.
- * The baseline is that the EXT data is reduced by other consortia such that the EXT task is to make sure that the data conform to the requirements:
 - * 1% relative photometric accuracy across the whole survey
 - * 0.02% color "calibration" drift across smallest spatial scale of PSF model (1 fov).
 - * At minimum, OU-EXT extracts the photometry from the coadded survey images.
- * Open questions for EXT data and pipeline strategy:
 - * Optimal detection/photometry on single epochs or coadded frames?
 - * Representation of the EXT photometric data in the simulation branch?
 - * Size of the spectroscopic sample for WL tomographic bin redshift calibration?

OU-EXT providers

- * Only the Southern sky is covered:
 - * DES (5000 deg²) possible extension (e-DES) of 2500 deg².
 - * KIDS/VIKINGS 1500 deg².
- * For the northern sky, a number of options are being discussed:
 - * Pan-STARRS (1,2) requires extra funding to be secured (possibly by Canada)
 - * Subaru/HyperSuprimeCam requires agreement with Japan, 6000 deg² EC + 1500 deg² Subaru.
- * Other options for northern sky include WHT and CFHT but are much less advanced.

OU-MER role

- * Performs the difficult task of creating the object catalog from the different survey instrument (VIS, NISP-imaging, NISP-spectroscopy, EXT-imaging, EXT-spectroscopy).
- * Can be seen as the main hub for the SGS pipeline:
 - * photo-z can only be derived from merged ground and space based photometry.
 - * PSF model requires a catalog of bona-fide stars with SED in the VIS band.
 - * Galaxy shapes need to be "corrected" for the target SED.
 - * Spectrum extraction will require object position (hence detection).
 - * Spectrometric redshift measurements will often require photometric redshifts as a constraint.

OU-MER activities today

- * Cataloguing working group initiated:
 - * Studies the cataloguing options taking into account:
 - * Requirements.
 - * Different strategies coming from different groups (e.g. WL vs. Legacy).
 - * Know issues and techniques (different PSFs, variable PSFs).
 - * Photometric strategies depending on objectives.
 - *
 - * Follow project on Redmine
 - * Led by A. Fontana and M. Sauvage