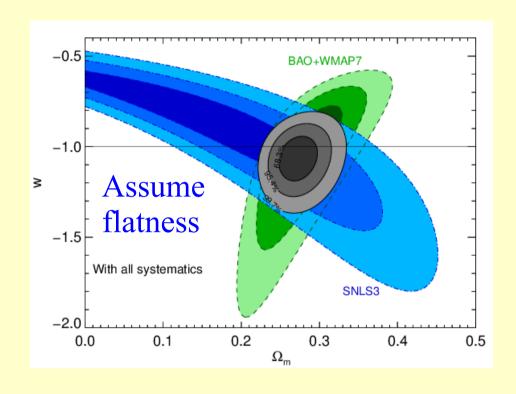

Distances aux supernovae avec Euclid

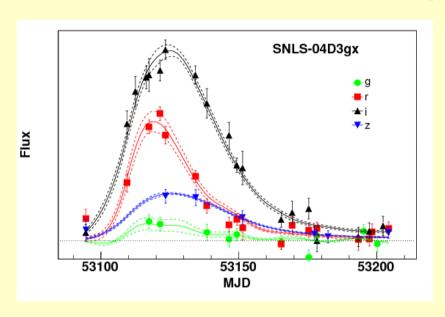


SN and Transients WG.

Conveners: I. Hook, C. Tao

Supernovae: présent et futur proche

• Contours avec systématiques

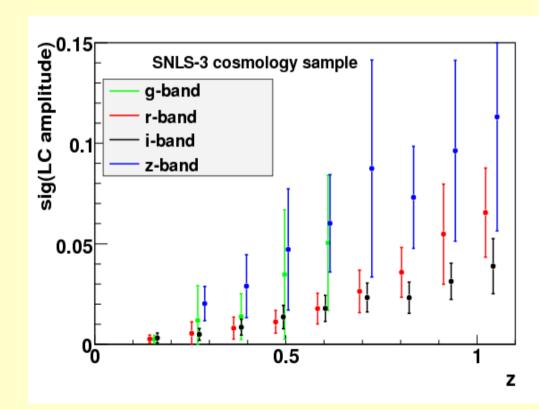

D'ici 2020: DES

• 2000-4000 événements

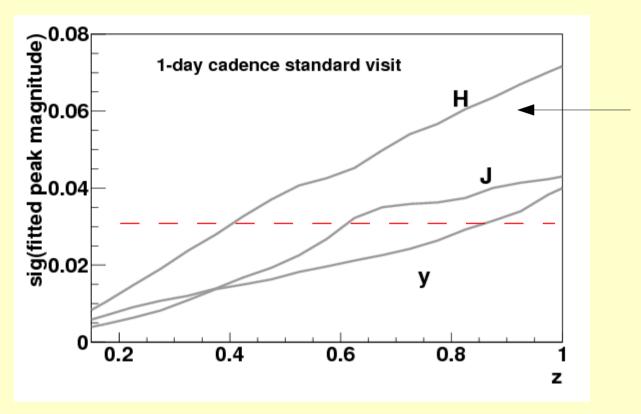
• z<~ 1

Conley et al, Sullivan et al (2011)

Qualité photométrique pour les distances


SNLS: précision de l'estimation de l'amplitude

Requirements:


- 3 % ou mieux
- 2 bandes, 3 si possible.

Indicateur de distance

- directement
- via la couleur

Visites standard d'Euclid?

C'est celui qui importe aux plus grands z

Supposons une visite par jour et par pointé:

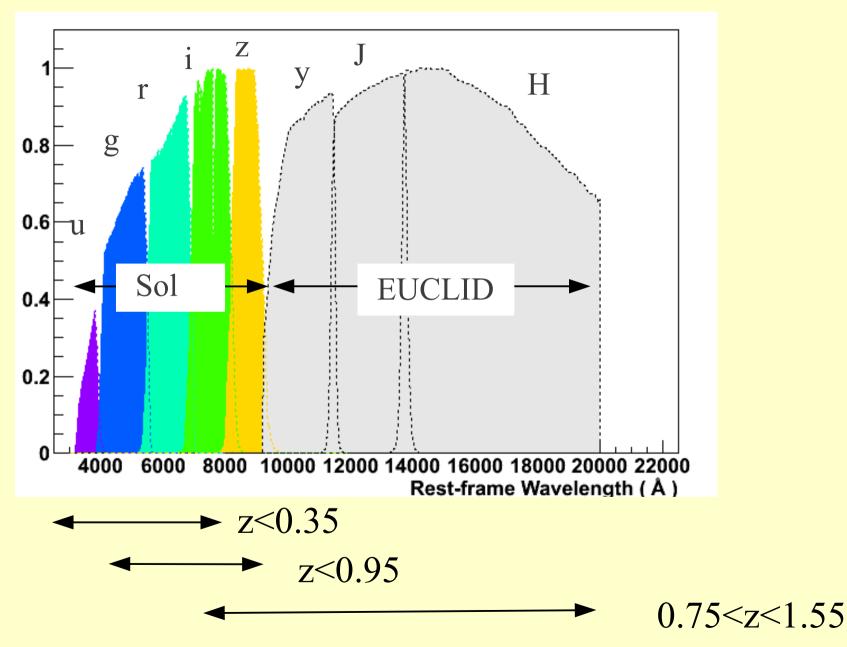
- 10 deg² (plein temps).
- z<1 (en faut z<0.4 ou 0.8 selon les bandes)
- 180 visites (= 6 mois plein temps)
- \rightarrow 500 SNe (z<1) \rightarrow pas interessant

Le projet SN pour 2020+

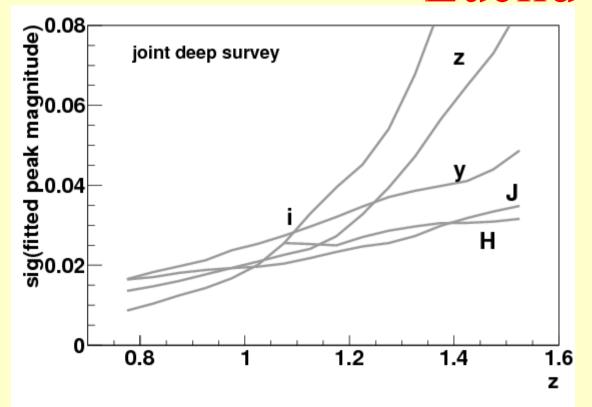
- Beaucoup : O(10000) évenements
- Z max : aussi grand que possible
 - → Imagerie IR, objets faibles
 - \rightarrow Espace.
- Qualité photométrique : au moins aussi bonne que SNLS : résolution de 3% intégrée par bande.
- Bandes au repos similaires à tous les z.

Tranches de z

Bas z : bandes (u) gri (z) Sol


Moyens z: bandes griz → z<0.95 Sol

Grands z: bandes i z y J H 0.75<z<1.5 Sol +Euclid.


Hypothèse de travail : sol = LSST

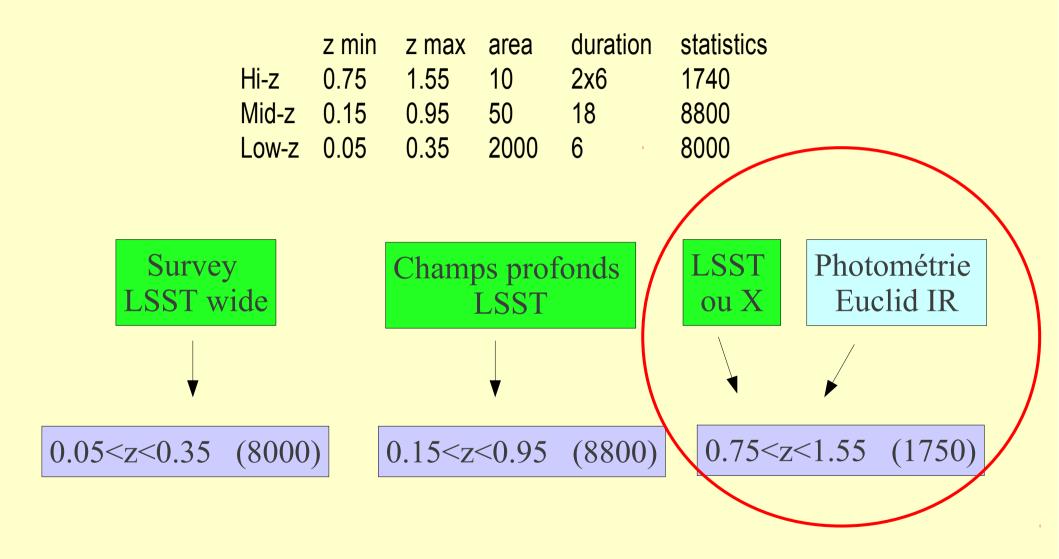
- il n'est pas nécessaire qu'un seul téléscope réalise tout.
- DecCam ou HSC (Subaru) pourraient faire la partie à grand z.

Sol+Euclid: photométrie visible & IR

Mesurer des distances à grand z avec Euclid

Hypothèses :
Cadence = 4 jours
Survey LSST – Euclid

		m5	
LSST	i	26.05	700 s
LSST	Z	25.65	1000 s
Euclid	Υ	25.50	1200 s
Euclid	J	25.85	2100 s
Euclid	Н	26.05	2100 s


• La couverture en longueur d'onde est plus grande que l'intervalle de i i à z=0.8 \rightarrow 420 nm H à z=1.5 \rightarrow 660 nm

Volume d'observations

Hypothèse de travail : équivalent 6 mois temps plein.

- \rightarrow 20 pointés = 10 deg²
- → imagés 2 fois 6 mois (moitié du temps d'observation)
- \rightarrow 90 visites \rightarrow profondeur finale m >~28

Euclid & LSST +X

Nom de code : AAA Survey

Simulations et constraintes cosmologiques

Astier, Guy, Pain, Balland (2010)

Sources d'incertitude :

- Bruit de grenaille (ciel plus objet)
- Incertitude statistique du modèle de SNe.
- Incertitude systématique de calibration (0.01)
 - Directe
 - A travers l'entraînement du modèle.
- Dispersion de couleur des SNe : les amplitudes fluctuent de 0.025.
- Bruit de distances : 0.12 sans le bruit de couleur.
 - \rightarrow 0.16 au mieux.
- Erreur systématique de distance de 0.01*z (corrélée à tous z)
- C'est l'état actuel de l'art : pas d'extrapolation.

Resultats

Résumé:

	z min	z max	area	duration	statistics
Hi-z	0.75	1.55	20	6	1740
Mid-z	0.15	0.95	50	18	8800
Low-z	0.05	0.35	2000	6	8000

Surveys limités en redshift!

Constraintes cosmologiques avec R mesuré à 0.36 % (Planck) + univers plat

	sig(w_0)	sig(w_a)	FOM
3 surveys	0.022	0.25	204
low+mid	0.028	0.31	137
mid+high	0.031	0.40	82

• La contribution d'Euclid est importante (mais elle ne domine pas).

Redshifts

Obtenir les redshifts des hôtes avec un MOS (Lidman et al 2012) p.e. 4Most, BigBoss Quelques pointés.

Contamination

Coupures autour de diagramme de Hubble suffisantes (e.g. P.A. et al 2011)

Courbes de lumière et couleurs sont du bonus.

Conclusions

- Dans le paysage actuel, on peut faire un diagramme de Hubble concurrentiel à grand z avec X+Euclid.
 - Euclid tout seul ne peut pas grand-chose pour les distances aux SNe.
 - Euclid permet d'accéder à z>1.
- La performance combinée est bonne, avec les systématiques courantes.
- En cours de rédaction :
 - Additional Science Requirement Document.
 - Papier