

Galaxy Clustering SWG

Euclid-France meeting Toulouse 3/12/2012 Sylvain de la Torre

GC-SWG lead: Luigi Guzzo & Will Percival

Galaxy clustering

1. Is cosmic acceleration produced by a cosmological constant or by an evolving scalar field?

- Measure expansion history H(z) to unprecedented accuracy, as to detect percent variations of w(z) with full control of systematic effects
- → Using Baryonic Acoustic Oscillations (BAO) in the clustering pattern
- 2. Does General Relativity need to be modified on cosmological scales?
 - Measure growth history of structure to unprecedented accuracy
 - → Using anisotropy of galaxy clustering in redshift-space (Redshift-Space Distortions, RSD)

Baryonic Acoustic Oscillations

EUCLID Consortium

(BOSS, Anderson et al. (2012)

Cosmic Microwave background

(WMAP, Komatsu et al. 2009)

P(k) and BAO: current

P(k) and BAO: Euclid

EUCLID forecast: 20% of the data at z=1

Redshift-space distortions

EUCLID Consortium

Redshift-space distortions

EUCLID Consortium

$\xi(r_{\alpha}, r_{\pi})$ and redshift-space distortions

Current and EUCLID measurements of the growth rate f

The long way from raw data to cosmology

EUCLID Consortium

Galaxy clustering: requirements

- Need:
 - angular galaxy positions
 - galaxy redshifts
- Need to understand the population:
 - angular completeness
 - radial completeness
 - radial/angular density variations
 - ightarrow This is the hard part

• Then measure n-point statistics: *P(k), ξ(s), ξ(s,v), P(k,μ), etc...*

Redshifts from Euclid slitless spectroscopy

1 deg² of the sky simulated and propagated through end-to-end Euclid spectroscopic simulation (Garilli, Franzetti, Ealet, Roche, Rossetti et al.)

- Slitless provides an *a priori* uniform sample (no target sample)
- Slitless spec. means that almost all spectra are contaminated: contamination is the largest source of redshift failures
- Uniformity, completeness, purity are the key issues to be kept under control → Simulations and Deep survey are crucial

Spectroscopic confusion problem

(Euclid Red Book, Laurejis et al. 2011)

Work-package	Input product	Output product	Notes	Priority
[[Sample selection]]	list of ra, dec, redshift PDF (+ other galaxy properties?) for mocks	Sample weighting, or inclusion/exclusion (might be angle dependent), sample mask	Development work with mocks, then application. Liaise with OU-SIM, input for OU-LE3	High
[[Survey Mask]]	Information on data	Mask	Led by OU-LE3 internal work package, liaise with OU-SIR, OU-SPE, OU-SIM, SWGs on science	High
[[Deep field analysis]]	deep field mocks, standard simulations	analysis of slitless spectroscopy effects. Estimation of depths and angular distortions. Estimate science potential of clustering in deep fields	Liaise with OU-SIM, SWG-SIM (simulations), OU-LE3 (masks), Legacy SWG	High
[[Angle dependent clustering]]	standard simulations, information from deep field	Algorithm to remove slitless effects	led by OU-LE3 GC work package, but with SWG input	High

[[Reconstruction algorithms]]	list of ra, dec, redshift PDF (+ other galaxy properties?) for mocks	Algorithms and estimate of induced error	Development work with mocks, then application. Joint OU-LE3 galaxy clustering task. Final algorithm development and testing in OU-LE3	Medium
[[Covariance matrices]] and likelihood techniques for 2-pt correlation functions and power spectra	spectro-z and photo-z(?) mock galaxy catalogs	covariance matrices	Cosmic variance and shot-noise, model dependency required. Joint group with OU-LE3 GC work-package (data expertise and issues). SIM-SWG task 5 group working on simulations required: need input on what to run.	Medium
[[3-pt covariance matrices]] and likelihood techniques	spectro-z and photo-z(?) mock galaxy catalogs	covariance matrices	Cosmic variance and shot-noise, model dependency required. Joint group with OU-LE3 GC work-package (data expertise and issues). SIM-SWG task 5 group working on simulations required: need input on what to run.	Medium
[[3-pt calculation]]	simulations	Algorithms for determining cosmology-depende nt 3-pt statistics, and dependencies therein.	Led by OU-LE3 GC work package task, but close interaction required with GC-SWG on cosmological model issues	Medium

[[joint GC-WL field	simulations	best-fit matter,	development work	Medium
calculation]]		galaxy density fields	could increase	
			importance. Work	
			with WL-SWG.	
[[joint GC-WL field	matter, galaxy fields	parameter	development work	Medium
analysis]]	recovered from	estimates	could increase	
	simulations		importance, and	
[[Photo-z sample	list of ra, dec,	Sample weighting,	Development work	Medium
selection]]	redshift PDF (+	or	with mocks, then	
	other galaxy	inclusion/exclusion	application. Liase	
	properties?) for	(might be angle	with OU-SIM,	
	mocks	dependent), sample	OU-PHZ, input for	
		mask	OU-LE3	
[[2-pt photo-z	photo-z mock	Algorithms for 2-pt	Led by OU-LE3 GC	Medium
calculation]]	galaxy catalogs	statistics, and	work package task,	
		dependencies	but close interaction	
		therein	required with	
			GC-SWG	
[[Photo-z	photo-z mock	covariance matrices	Cosmic variance	Medium
covariance matrices	galaxy catalogs		and shot-noise,	
and likelihood			model dependency	
techniques]] for			required. Joint	
2-pt correlation			group with OU-LE3	
functions and			GC work-package	
power spectra for			(data expertise and	
photo-z samples			issues). SIM-SWG	
[[joint GC-clusters	simulations with	algorithm for	An extension of	Medium
analysis]]	cluster positions,	including this data	catalogue	
	mass estimates from		selection. Work with	
	OU-LE3 clusters		clusters-SWG,	
	work-package		OU-LE3 clusters	
			work-package.	